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1 Introduction
Rotor systems are often constructed using either rolling element or journal bearings to enable
relative angular motion between the rotor shaft and the system housing. Rotor dynamics and
structural finite element models of such systems generally use linear elastic elements (linearized
about a normal operating point) to represent the coupling characteristics of these components
instead of employing complicated bearing models that must be solved simultaneously with the
system model. The process of determining the coupling characteristics of both types of bearings
can be complicated, but for different reasons. The difficulty for rolling element bearings is
mainly a result of having a discrete number of rolling elements (see Figure 1.la), which causes
the stiffness to be highly nonlinear since the number of rolling elements in contact with the
raceway at any given time depends on the amount of shaft deflection. A detailed discussion of
rolling element bearing modeling is out of the scope of this report. Instead, the reader is referred

to the discussion of this topic provided in Reference 1.

Unlike rolling element bearings, journal bearings are difficult to model because their stiffness
and damping depends on a hydrodynamic lubrication layer with characteristics that are largely
controlled by the relative velocity of the bearing and journal surfaces, lubrication viscosity, and
bearing geometry. This layer exists in the fluid region between the shaft and the journal as
shown in Figure 1.lb. The ability of the fluid film to carry a load is a result of a converging fluid
film gap caused by eccentricity of the journal relative to the bearing and the presence of a
viscous fluid. The result of these conditions is a viscous shear flow that yields a net

hydrodynamic force in the gap that can support a load with no direct journal-to-bearing contact
(and hence no bearing wear).

There are a variety of hydrodynamic journal bearing designs used for rotating equipment [2],
most of which are a variation of the common plain bearing design. Some of the usual variations
include the multi-lobed and tilting pad designs shown in Figure 1.2. Often, the intent of the
design modifications is to enhance the overall stability of the rotor system. From a modeling
perspective, the modifications result in a more complex system. For low order (1-dimensional)
shaft/housing models, methods are available to derive net stiffness and damping characteristics at
the shaft centerline. Higher order models that attempt to simulate the dynamic behavior around

Y #
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(Journal)

Element Inner Ring

0z0

x Fluid Bearing

(a) (b)

Figure 1.1. (a) Rolling element bearing schematic, and (b) plain journal bearing schematic.



the housing and shaft circumference require distributed stiffness and damping representations of

the bearings. For example, a rim-drive motor finite element model may require the application
of circumferentially varying forces or the prediction of response harmonics in the circumferential
direction and thus a distribution of the bearing coefficients around the journal circumference is
required. It is the intent of this report to summarize the methods currently used to approximate
the equivalent dynamic characteristics for the plain journal bearing and the tilting pad bearing
and introduce a method to circumferentially distribute these coefficients for use in a structural
finite element model. As previously stated, the plain journal bearing and the tilting pad bearing
are being focused on here because they are two of the most commonly employed bearings for
rotating equipment.

Journal JPad Pivot

Lobes Pads Housing

(a) (b)

Figure 1.2. (a) Four-lobed bearing, and (b) tilting pad bearing.

2 Background
The process of computing bearing dynamic coefficients begins with solving for the pressure field
in the fluid film between the journal and bearing surfaces. The equation used for this purpose is
referred to as the Reynolds equation. Important aspects of this partial differential equation are
highlighted next, along with boundary conditions and methods to solve the system.

2.1 The Reynolds Equation
The film pressure in a journal bearing is generally computed using the Reynolds equation shown
below' [4,5,6,7].

An informative historical review of hydrodynamic lubrication theory and the development of the Reynolds
equation can be found in Reference 3.
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where h is the film thickness, #u is the lubricant viscosity, p is the fluid film pressure, R is the
bearing radius, t is time, d2 is the angular speed of the journal relative to the bearing, z is the
coordinate along the axis of rotation, and 0 represents rotation about z. The derivation of
Equation 2.1 begins with the Navier-Stokes and continuity equations and employs several
assumptions, including the following: 2

e effects of bearing curvature are negligible (i.e., centrifugal forces are neglected),
e pressure variation across the fluid film is negligible,
e the flow is laminar,
* fluid inertia effects are negligible when compared to the viscous effects, 3

e the flow is incompressible, and
e the fluid viscosity is constant.

For turbulent flow, turbulent correction factors, Go and Gz, obtained from Hirs bulk-flow theory
[9,10] are often added to Reynolds equation to approximately account for the turbulence effects.
Using these factors, the Reynolds equation becomes:

a G6 + Gz =IaA + (2.2)R aO( R '-0 a # zz =2" a at-

where

21+m Re-(+m), and (2.3)
n(2 + m)

Gz = Re-(I+"). (2.4)n

For flows with smooth surfaces and Reynolds numbers (Re = pVh) less than 105, common
,u

values for n and m are: n =0.066 and m = -0.25 [11]. For laminar flow, Go and Gz are both equal
1

to 12

2 Inherent to the Navier-Stokes equations is the assumption of a Newtonian fluid. For non-Newtonian fluids, a

lubrication rheological model may be necessary (see Reference 8 for an introduction to lubrication rheology).
3 The consequence of this assumption is that all terms in the Navier-Stokes equations that are multiplied by eaRe are
neglected when eRe << I (e'= HIL, Re = pVH/u, H is a characteristic film thickness, L is the bearing width, V is a
characteristic velocity, and u is a characteristic fluid viscosity).
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Note that the derivation of the Reynolds equation assumes negligible fluid inertia effects. This

assumption is supported when the modified Reynolds number, Re* - pVC C, is much less than#• R

unity. For cases when this criterion is not met, methods presented in References 10 and 16
should be used to account for the inertia effects.4 Also note that the Reynolds equation assumes
constant fluid viscosity within the fluid film. Methods to incorporate a variable viscosity due tothermal effects are presented in References 17, 18, and 19.

2.2 Boundary Conditions
The choice of appropriate boundary conditions for the Reynolds equation has been the topic of
much discussion over the years, focusing mainly on how the film rupture boundary condition is
handled. In fact, boundary conditions that are compatible to both the boundary pressure and
continuity are yet to be defined [16]. Film rupture may occur at the 'downstream' boundary if a
diverging film exists at this location. For a plain journal bearing, a diverging film will always
occur at the downstream boundary (02 = nt+0 in Figure 2.1). However, short-length pads often
have a converging film over the entire surface (see Figure 2.2 for a schematic of a bearing with
short length pads).

There are two types of boundary conditions that are commonly used: the Reynolds conditions

SW 
D

e: Eccentricity
a. Journal Diameter

-. htr: Film Thickness
Y W Applied Load

0. Attitude Angle
.Q. Journal Speed

i / r=nt

Figure 2.1. Plain journal bearing variables.

4 Reference 10 reports that as CIR decreases, the results from the equations that include inertia effects decrease
monotonically to the results of the classical theory. Thus, it may be acceptable to neglect inertia effects when CIR is
small.
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Figure 2.2. Tilting pad journal bearing analysis variables.

(p(02)= - 0 ) and Gumbel's conditions. The Reynolds conditions are applied by setting

every term of negative pressure to zero during the solution process, and Gumbel's conditions
suggest that all pressures in the solution that are less than atmospheric pressure be ignored' [16].
While neither method maintains flow continuity, the theoretical results obtained from using
either of these conditions have been shown to closely match experimental data [16].

2.3 Reynolds Equation Solution
Closed solutions to the Reynolds equation (Equation 2.1) have been developed for two simplified
conditions [4]: an infinitely long bearing (Sommerfeld or long bearing solution), and an infinitely
short bearing (Ocvirk or short bearing solution), both of which are summarized in the Appendix.
The Sommerfeld solution is applicable to bearings with length (L) to diameter (D) ratios large
enough that leakage from the bearing ends is small relative to the flow in the circumferential
direction (i.e., LID >> 1), whereas the Ocvirk solution is applicable to bearings with L'D < -1
such that end leakage is significant. Because most bearings in use have LID ratios in the range of
¼ to 1, the Ocvirk solution is often applicable [4].

In order to avoid the limiting assumptions of these simplified solutions, the Reynolds equation is
often solved numerically using finite difference [12,13], finite element [11], or other methods
wherein the solution is obtained from a search for the minimum value of the functional [11]:

5 This is sometimes called the half-Sommerfeld approach.
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J(P)=PL 2 + dpdz. (2.5)
2P2R -,2 azy' 0 ) 2p az 2a a

Moreover, the computation is sometimes simplified by using "Shelly's Method", which assumes
a functional dependence of the pressure in the axial direction [11,14]:

P(0, Z) =P,[ I - I ]2 (2.6)

Here, n is a chosen constant which depends on the length-to-diameter ratio of the bearing6, and
L L

2 2

3 Fixed Pad Dynamic Coefficients
The calculation of dynamic coefficients for plain and fixed pad journal bearings is considered in
this section. The calculation for the tilting pad bearing builds upon the fixed pad method, as
presented in Section 4.

3.1 Journal Load Capacity
Once the pressure distribution is determined using one of the methods described in Section 2, the
external load that can be supported by the journal is determined by integrating the pressure
distribution over the film surface [5,13,16]:

I=- L p RdOdz, 
(3.1)F, 2

where F. is the load in the x-direction, and Fy is the load in the y-direction (see the coordinate
system in Figure 2.1 or Figure 2.2). The integration limits for Equation 3.1 correspond to the
beginning of (01) and the end of (t2) the active film region since the ?ressures are zero elsewhere
when the boundary conditions described in Section 2.2 are applied. Integrating over the entire
film yields the net load that can be supported by the journal at the specified operating conditions
for which the pressure field was computed. The force due to a portion of the overall film is
computed in a similar manner, but with integration limits specific to the region of interest.

3.2 Perturbation Method for Computing Dynamic Coefficients
The reaction forces computed in Equation 3.1 can be related to dynamic stiffness and damping
coefficients by expanding these forces about the static offset position (i.e., the normal operating
point) using a Taylor's series expansion [5,13]:

6 For medium-length journal bearings where /4 < UD < 1, n = 2 provides reasonable accuracy [11,14].
7 0, and 0 are limited to 0_< 0< (0-+t) for a plain journal bearing based on the converging film region.
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Fx = Fx, +kxA+kAy+bi +b ,A5 (3.2)

Fy = Fy0 + kyx~x + kYAy + byxM + bA'.

where F, is the x-component of the static load, Fyo is the y-component of the static load, Ax and

Ay are small amplitude motions in the x- and y-directions, respectively, and Ai and A' are the
vibration velocities in the x- and y-directions, respectively. The coefficients of the Ax, Ay, Ai,
and A$ terms in Equation 3.2 constitute the equivalent bearing dynamic coefficients used for
dynamic analyses [5]. These coefficients are determined by solving the Reynolds equation using
a perturbation on the film thickness, Ah, such that [5,7]:

h = ho + Ah, (3.3)

where
ho = nominal film thickness = c + xo-cosO+ yo.sin0, (3.4)

Ah = perturbed film thickness = Ax.cos(6) + Ay-sin(0), and (3.5)

± = Nicos0+A )sin0. (3.6)

The perturbed film thickness creates a perturbed film pressure that is defined using a Taylor's
series expansion [5,8,16,23]:

P=Po + P.Ax + pYAy + P >At + p4 = po + 4p, (3.7)

where px and py are the pressure components related to the film stiffness and p' and p' are the
pressure components related to the film damping.

Substituting Equations 3.3 to 3.7 into Equation 2.1 and retaining first order terms only yields five
equations (coefficients of Ax, Ay, Ai, and AS are equated in this step):

ZI0I=1 Q A
2 aO

3 Cos0 01 aho !3h e I Po I a.coso0I l sinOz{p}---h 2 aO 12,u R aoRa ho) 2
,_'-V-sn1ak0h° •1 p 0 1 0 (sin0] llcs

7 2 I=- -sn a-o-3- h -I --oI a sin0 QCos 0 (3.8)ho0 2 a 12,u R a0 R aG( ho. 2

Z{p"I=cosO

Zýp}= sinO

where the left hand operator Z{( is defined as:
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Z{ h= R a, R(3.9)

By combining Equations 3.1, 3.2, and 3.7 we have:
k,, L d o, CS 0
ky} = - 25 • P" { }in Rddz2

k L,

b,, 2 ;. sine 0~ o
k -Y L , {2 p . SO }R d 6 z

byy 2sn

Integration over the entire film surface in Equation 3.10 yields the dynamic coefficients that are

often used in rotor dynamic analyses. For high order structural finite element analyses, these
coefficients can be distributed along the journal circumference by specifying appropriate
integration limits corresponding to the finite element node locations. It must be noted, however,
that the distributed bearing coefficients do not account for changes in the film that result from
flexure of either the journal or bearing, and thus this method is only an approximation for cases
when the journal and/or bearing are flexible. See Reference 23 for a discussion of the effect of
such flexibility on the dynamic coefficients.

4 Tilting Pad Dynamic Coefficients
Computation of dynamic coefficients for the tilting pad bearing is more involved than what is
presented in the previous section for the 'fixed pad' bearings. The method presented below for
tilting pad bearings builds upon the methods described above.

4.1 Tilting Pad Characteristics
A tilting pad bearing is composed of N pads, each with the capability of pivoting around a
fictitious point located on a circle called the pivot circle. The main parameters include (see
Figure 2.2): the number of pads, N; the journal radius, R; the pivot point circle clearance, C'; the
pad angal y e ent mass of the pad, M = n /s2; pivot lcation, pivot pad lcation ratio,

acy; pad width, L; pad radius of curvature, Rp; and the machined clearance, C = R,- R.

The preload8 , also referred to as the preset, is an important analysis parameter for the tilting pad
bearing. The preload is a measure of the converging film that is created by the bearing geometry
and not by an external load as the name might infer. Extreme bearing preloads are shown in
Figure 4.1 to aide in the visualization of this parameter.

p Note that the preload, M = 1 - C7C, is different from the preioad ratio, C7C.

cyr;padwidh, ; pd rdiu of urvtur, R; ad te mchind cearnce C RP- 8
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(a) (b)
Figure 4.1. Concept of bearing preload: (a) preload = 1 (preload ratio = 0), (b) preload = 0.

An important characteristic of the tilting pad bearing that separates it from the other types of
bearings is the existence of a rotational degree of freedom for each pad. These additional
degrees of freedom result in a total of 4+5N stiffness and 4+5N damping coefficients [11].
Because rotor dynamic models generally are not concerned with modeling the motion of the
individual pads, methods have been developed to obtain a reduced set of coefficients (4 stiffness
and 4 damping) by assuming a vibration frequency for the pad rotation. A discussion of reduced
coefficients is provided below in Section 4.3. Prior to performing any type of dynamic

coefficient reduction, however, the static characteristics must be defined.

4.2 Pad Assembly Method
The procedure for computing tilting pad dynamic coefficients begins with determining static
characteristics of each tilting pad operating as a fixed pad. The characteristics of interest are the
force and journal eccentricity. Once the static characteristics are known for a single fixed pad,
the static characteristics of the tilting pad bearing are determined using superposition of the fixed
pad results. This method, originally introduced by Lund [13] and used by other researchers in
subsequent studies [20,21,22], is know as the Pad Assembly Technique. The local eccentricity,
e., and attitude angle, 0, of each pad is determined using Equation 4.1.

e, cos , = m -e0 cos(i, - 00 ), (4.1)

where e. is the eccentricity ratio relative to pad i, 0 is the attitude angle relative to pad i, go is the
eccentricity ratio of the assembled bearing, and 4o is the attitude angle of the assembled bearing
relative to the global coordinate system (see Figure 4.2).

Equation 4.1 is derived from geometrical considerations using a local pad coordinate system as
shown in Figure 4.2 [13]. This assembly method generally involves a trial and error approach to
find the assembled journal eccentricity and attitude angle (see Figure 2.1) such that the journal
load equals the applied load. Often, a Newton-Raphson based iteration scheme is employed
during this step [20].

Once the bearing is assembled, the dynamic coefficients for each pad are determined by applying
the methods presented in Section 2.3 using the eccentricity and attitude angle relative to each pad
in the pad's local coordinate system. The dynamic coefficients for each pad are computed in the
local pad coordinate system (see Figure 4.2) assuming the pad is fixed (i.e., not free to rotate
about its pivot point). However, because of the pad rotational degree of freedom, there is no

9
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Figure 4.2. Tilting pad local and global coordinate systems.

static force in the T-direction and the dynamic force in this direction is a function of the pad's
rotational effect on the fluid film as well as its inertia and vibration frequency.

4.3 Synchronous Reduction of Dynamic Coefficients
At this point, an assumption of the pad vibration frequency is often made and the coefficients are
reduced from 8+10N to 8 (4 stiffness and 4 damping) coefficients so they can be incorporated
into a low-order structural model. The most commonly used assumption is that of synchronous
vibration of the pads with the rotational speed of the journal, which is often referred to as the
synchronous reduction of the dynamic coefficients. This method was originally proposed by
Lund [13]. The pertinent equations are as follows (Additional details can be found in References
11 and 13.):

k. =k' cos2 y+k sin - • +k2 ycos/rsi' k
,f ?/? (q, ')CO /sn

kI = k' cos 2 or"- k' sin 2 Y/"+ (k' -k',)cosysi(

ky, =k' cos2 yk' sin2y/++ -k(k' cos-sk'

kyy = k' cos2 V + k' sin 2 + (k' + k'cos vsin(.

wb_ = • cOs2 y + tb, sin 2 y/ _ M + rI* )cos ysiny
b = ,COS2 V - s2ny/+ q - ), cos V/siny,zb si (b,f m')

wb• = cos2 ;V-_t4b sin2V+(bý, -m,,j)cosy/siny/

10



where

kf'f =kg - (pký,, + qmb•w )k,7 - (qkcw - pobf,, *.,f

k' =-Ma2(pko1 + qmbio)
k';¢ =:-M(2(pk,,7 + qmb,,7)

k;,7 =-Mtw2 (1+ pMIU2 )(43
t b'f = =tobf - (pk,, + qtbc )b,7 + (qk•,,7 - ptbý ,7,' (4.3)
Orb, = MIU I(qk• - ptb•

P (k- Mt'2 ) 2 + (tb,7,7)2 (4.4)

q (k,- MI'2 ) 2 +1 (Mb','?)Y

The process of reducing these coefficients in this manner introduces a frequency dependence of
the coefficients as shown in Equation 4.3.

4.4 Coefficients for Explicitly Modeled Tilting Pads
To avoid the complications associated with using reduced coefficients (i.e., frequency dependent
coefficients and no formal method to circumferentially distribute the coefficients for a high-order
structural model), the pads can be modeled explicitly in a finite element model and the rotor and
stator can be coupled through the pads using distributed dynamic coefficients. The coefficient
distribution is accomplished through the application of appropriate integration limits in
Equation 3.10. With this approach, the pad rotational degrees of freedom are accounted for in
the finite element model and the coefficients are not frequency dependent9. Note that the
coefficients are computed in a local coordinate system and then transformed to the global
coordinate system using a transformation matrix, T, such that K = [T] [k][T] and B = [T] [b][T],
where K and B are the coefficients in the global coordinate system, and k and b are the
coefficients in the local coordinate system. The transformation matrix, T, is defined such that
F = Ti where i is a displacement in the global coordinate system and i a displacement in the
local coordinate system [25]. For the coordinate systems defined herein (i.e., angles measured

9 Note that the coefficients are a function of the journal rotation rate because this has an effect on the fluid film
pressure characteristics. However, for a given journal speed, 12, all of the journal bearing dynamic coefficients,
except for the tilting pad reduced coefficients, are independent of vibration frequency.

11



from the negative x-direction), the transformation matrix is computed as follows for each pad
coordinate system:

T[. sin •V - cos v' i= I to N. (4.5)

When computing the dynamic coefficients for a tilting pad bearing, it is important to recognize
that the final results are a function of the bearing load, direction of applied load (e.g., load-on-
pad versus load-between-pads), journal operating speed, as well as the other fluid film
parameters defined above. Additional effects on the computed equivalent bearing coefficients
such as those caused by a non-rigid pivot and a flexible pad have not been addressed here but are
discussed in the literature [23,24]. Note that pads for which there is no converging film, called
unloaded pads, generally do not contribute to the overall stiffness but do in some cases
(depending on their pivot design) contribute to the damping [22].

4.5 Application of Dynamic Coefficients to Finite Element Structural Models
The unsymmetric bearing stiffness matrices that often result for bearing models can be difficult
to implement in structural finite element models. The presence of an unsymmetric matrix causes
the system to have complex eigenvalues, and thus a complex eigensolution may be required.
Standard methods for incorporating such matrices into a finite element code are available. For
instance, the direct matrix input cards (DMIG) of COSMIC/, MSC/ and CSA/ Nastran can be
used to implement any type of mass, stiffness, or damping matrix (symmetric or unsymmetric,
real or complex) using the M2GG, K2GG, or B2GG case control commands for symmetric
matrices-for all solution sequences--or the M2PP, K2PP, or B2PP case cpntrol commands for
unsymmetric matrices-for dynamic response analyses only (excluding normal modes analyses).
The reader is referred to Nastran documentation [26] for descriptions of these methods and their
limitations. Note that the stiffness matrix can be decomposed into a symmetric matrix
(k,,,, = (k + k T)/2 ) and an anti-symmetric matrix (ka,,,y, = (k - k T)/2 ) such that k=-ksyrm+kamisyr.

The symmetric matrix can be added using the K2GG case control command while the anti-
symmetric matrix can be added using the K2PP case control command. Adding the matrix in
this manner and performing a modal complex eigensolution (Nastran SOL 110) allows the effect
of the anti-symmetric matrix to be evaluated in terms of resonance frequency changes from the
normal modes solution to the complex eigensolution. If the effects are negligible, then dynamic
results can be obtained using the symmetric matrix with no need for unsymmetric matrix solvers,
which are generally more computationally expensive.

5 Distributed Coefficient Example Problem
An example problem is provided to illustrate the effect of applying bearing coefficients to a FE
structural model using: 1) the method presented herein for distributed coefficients, and 2) a
uniform coefficient distribution to represent a method that is often applied to such models. The
example problem focuses on a tilting pad bearing design because of the complexity associated
with this type of bearing.

12



As discussed above, the bearing pads of a tilting pad bearing are generally not explicitly modeled
in a structural model. Instead, the bearing coefficients are computed using some sort of
reduction technique (e.g., synchronous reduction) to account for the pad vibration about the
rotational degrees of freedom and the coefficients (stiffness and damping) are applied to the
bearing using an ad hoc distribution that may only capture the low-order bearing effects. For the
example problem, the response of the model is computed twice: once with the proposed bearing
coefficient distribution and the tilting pads explicitly modeled (the "actual coefficient model"),
and a second time using a uniform'° distribution of synchronously reduced coefficients to each
node on the rotor circumference (the "reduced coefficient model"). The structure being modeled
is shown in Figure 5.1 with relevant information shown in Figure 5.2. The outer ring and tilting
pads are modeled using steel while the rotor ring is modeled using aluminum. The bearing
consists of eight tilting pads that are equally spaced around the journal circumference and
connected to the rotor ring at the pivot points shown in Figure 5.3 with a pad pivot location ratio,
ody of 0.5 (see Figure 2.2). Other details regarding the bearing are shown in Table 5.1:

Table 5.1. Bearing parameters (water at 305 K)

= 7.69x10 4 Pa-s d2Q= 19.2 Hz v,=320

p = 995. kgm3 L = 0.0203m a y = 0.5
D = 0.323 m C = 2.54x104 m m =0.4

= 1800

/ Applied Load

Response

Location* 1

Figure 5.1. FE model for the actual coefficient model showing applied load and response
locations.

10 The uniform distribution chosen here has no physical basis, but is consistent with what might be employed for

such a model.
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Outer Ring
Tilting Pad

Rotor Ring

T.4 r3 r2 r, 32

L = 0.0203 mn

r,= 0.139 m r3= 0.161 m
r2= 0.152 m r4= 0.175 m

Figure 5.2. Example structure relevant information.

Pivot Points

Figure 5.3. Tilting pad pivot location.

Because the tilting pads are not explicitly modeled when synchronously reduced coefficients are
used, the model for the reduced coefficients must be slightly modified from what is shown in
Figure 5.1. Two things should be noted regarding the changes. First, because the pads are
connected to the rotor ring in the model shown in Figure 5.1, concentrated mass elements are
added to the reduced coefficient model at the pivot locations to account for the translational
inertia of the pads (the rotational inertia about the pad pivots is inherently accounted for in the
synchronously reduced coefficients). These point masses are shown in Figure 5.4. The rotor and
stator rings are identical for both models, and this fact enables direct comparisons between the
results from each model.

The first step in the analysis is to compute the bearing dynamic coefficients. Two sets of
coefficients are computed: one set of distributed coefficients using the methods presented here
with a distribution to the FE grids on the tilting pads, and a second set using the method of
synchronous reduction and a uniform distribution to the FE nodes on the journal circumference.
In both cases, the bearing coefficients connect to the FE grids on the inner surface of the outer
ring. Because the pad assembly method is employed here, both coefficient computations require
the static operating characteristics (eccentricity and attitude angle) for each pad of the tilting pad
bearing.

The pad static characteristics are determined by solving the Reynolds equation and computing
the hydrodynamic force (Equation 3.1) for a variety of journal eccentricities. The attitude angle,

14



Applied Load

Outer Ring

l•~Pad Point Mass,

Figure 5.4. FE model for the reduced coefficient model.

0, for each eccentricity is obtained by varying 0 until the force in the 77-direction is numerically
zero (the coordinate system in Figure 4.2 is defined such that the load is entirely in the ý-
direction). A sample pressure field for a journal eccentricity ratio of 0.276 and an attitude angle
of 52.20 is shown in Figure 5.5. The pressure field was computed using a finite difference
approximation for the Reynolds equation with a discretization of 100 in the 9-direction and 60 in
the z-direction. The Reynolds boundary conditions were applied using an ambient pressure of
zero for all boundaries. The net journal load that can be supported by this pressure field is
(computed from Equation 3.1): Fý = 0.371 N and F,, = -6.93x10-1° N. Performing such a
calculation for several eccentricities yields the results shown in Figure 5.6.

The pad assembly method, described in Section 4.2, is then employed to compute the overall
journal eccentricity and attitude angle to support a desired load of 111.0 N. In doing this, the
local eccentricity and attitude angle relative to each pad is obtained and the bearing coefficients
can then be computed for each pad. It is at this point where the two methods diverge. The
synchronously reduced coefficients are computed using coefficients integrated over the entire
pad surface and the methods described in Section 4.3 are employed, while the actual coefficient
model uses a distribution of the coefficients to the pad FE grids. The coefficients are distributed
by solving for the pressure field over each pad and choosing appropriate integration limits in
Equation 3.10 based on the pad grid locations. The resulting coefficients for all pads are shown
in Figure 5.7 for the stiffness and Figure 5.8 for the damping. As shown in these figures, the
stiffness and damping are largest for the pad at 1800 and decrease to zero for the unloaded pad at
0'. Based on these results, one can imagine the errors that would be associated with a uniform
distribution of these coefficients over the journal circumference.

Because the reduced coefficients incorporate the effects of the pad rotation, an equivalent pad
mass is required for the reduced coefficient computation. The pad mass is computed as follows
for the steel pads:

15



M I 6.53xlO-6kg •m2

( k= I = = 2.50xlO- 4 kg. (5.1)R 2 (0. 165kg )2

The resulting coefficients after performing the reduction are shown in Table 5.2. These
coefficients are equally distributed to the FE grids on the journal circumference of the reduced
coefficient model.

350

300

250

I.

"- 2200

IL100--150

0 100
0.01

S19050

z(M) 4.005 180

-0.170 e (degrees)

Figure 5.5. Sample pressure field for tE=0.276 and 0=52.2°.

Static Force vs. Static Eccentricity Ratio
Journal Center Loci 150

00
300 C 300

15°20 0 02 0.4 0.6 0.8

Figure 5.6. Sample fixed pad static characteristics (W = journal load).
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Table 5.2. Synchronously reduced coefficients.

kxx = 9.71x106 N/m [kE = -77.8 N/m
ky, = 132. N/m ky = 3.36x105 N/m

bxx = 1.98x 104 N/(m-s) bxy = 0.797 N/(m-s)
byx = -1.19 N/(m-s) byy = 1.54x 103 N/(m-s)

It is interesting to note that it is the inclusion of the pad equivalent mass in this calculation that
causes the cross coefficients to become non-zero. Performing the same computation with no pad
mass yields zero cross coefficients as shown in Table 5.3. The pad mass does have an effect on
all of the coefficients in these tables, but the differences are small relative to the diagonal terms
(i.e., kx,, kyy, bxx, and byy).

x loe X, e
300 -- 3 --- -

200 1- 00 1 2,2 1.5 , ._

"100, oL 1 -/

% ," --- - 0- -- 1 --- - "
-200 - - . .• ,. - 100 0.5 ..... .- _-

-2-2

30 40 50 80 90 100 120 130 140 150 170 180 190 ( k88
k

x 104 yx
3 200

~2 -1000 0. 2-----2- <- T_2- 5L i~ i
210 220 230 240 260 270 280 300 310 320 330 -10 0 10

a (degrees) e (degrees) e (degrees) 8 (degrees)

Figure 5.7. Distributed stiffness coefficients for the actual coefficient model.
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,:+>:.. €•r:+.+;+7 + • •< . . .. 2000 --•- -.+. ,.....Z

30 40 50 80 90 100 120 130 140 150 170 180 190

Yxy

200F 4,-2 0• 
0.5-++

S150- 05[4 ý - -- -
10 t - - - 0"r I I

-20 .5 -- 1+o ~I - ' 1 7,-•• • -:. . - -- -0.5 -----

210 220 230 240 260 270 280 300 310 320 330 -10 0 10
e (degrees) e (degrees) e (degrees) e (degrees)

Figure 5.8. Distributed damping coefficients for the actual coefficient model.

Table 5.3. Synchronously reduced coefficients using no pad mass.
kXX = 9.7 1x 10'5 N/m k =0
kyx = 0 kyy = 3.36Sx10-5 N/m

bxx = 1.98x 104 N/(m-s) bxy = 0
byx = 0 by- = 1.54x10N/(ms)

Also note that the pad located at y/ = 0 is unloaded for this bearing and thus does not contribute
to the bearing coefficients (but the damping could contribute depending on the pivot design). If
this pad were fully loaded (i.e., a converging film over the entire surface), its contribution would
cause the direct coefficients in Table 5.2 and Table 5.3 to be equal because of the bearing
symmetry (i.e., k,-=kyy, and b.,=bk).

Accelerance (acceleration/force) transfer function plots for a radial excitation on the outer ring
and a response location on the rotor (see Figure 5.1 and Figure 5.4) are shown in Figure 5.9 for
both models. These results were obtained by performing a frequency response analysis using
MSC/Nastran with the bearing coefficients added via DMIG cards [26]. As can be seen in this
figure, the transfer accelerances have similar characteristics but exhibit differences in both
amplitude and resonance content for the two models. These differences reflect the method by
which the bearing coefficients are applied since the models are otherwise identical. The mean
accelerance (response points averaged over the rotor inner surface) and corresponding
circumferential Fourier decomposition for each model due to the same drive point as before is
shown in Figure 5.10. These plots show a significant amount of cross modal coupling for the
actual coefficient model relative to the reduced coefficient model for the resonances near 300
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Figure 5.9. Comparison of transfer accelerance magnitude using the proposed coefficient
distribution and a uniform distribution of synchronously reduced coefficients.

and 800 Hz. The Fourier decomposed results are obtained using the discrete Fourier transform
(DFT) applied along the circumferential direction for each frequency as follows [27]:

1NNs N1 • .•-•
aI[v]- I N- a (5.2)

NNS j= N /40

where a[v] is the average accelerance at a specific frequency for the Fourier component v, NNS
is the number of nodes per segment of the structure (the structure is divided into N equal
segments along the circumferential direction), and a[i,js] is the accelerance at node i of segment
,u. Because only the first N12 Fourier components can be resolved for an N-point DFT and these
coefficients are "mirrored" about N/2, the mirrored coefficients are summed together such that
a[1] = abs(a[1]) + abs(a[N -1]), a[2] = abs(a[2]) + abs(a[N -2]), etc. to ensure the
decomposed results sum together to yield the overall response. Note that if N is an even number,
the a[N/2] component is not mirrored. Here, N is chosen to be eight based on the structure
having eight times symmetry, which is a result of having eight tilting pads equally spaced around
the rotor circumference. This choice of N for the reduced coefficient model is sufficient to
resolve all of the Fourier components because the structure is axi-symmetric with eight times
symmetry. The actual coefficient model is not axi-symmetric due to the presence of a non-
uniform bearing coefficient distribution. Thus, a larger value of N should be chosen for the
actual coefficient model to decompose the response with minimal aliasing effects. However, the
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choice of N=8 is sufficient for both models to show the effect of the bearing distribution method
on the Fourier content" (see Figure 5.10).

Actual Coefficient Model20

0 --- - total-2200 600 800 1-N=04- 4N=0

Reduced Coefficient Model - N=2
20 _ _ _ _ __ N=3S.... N=4

0 *F

-80

200 400 600 800 1000

Frequency (Hz)

Figure 5.10. Mean rotor accelerance decomposition into circumferential Fourier
components.

A summary of resonance frequencies and structural damping loss factors for the two models is
provided in Table 5.4 for resonances up to I kHz. Several aspects of these results should be
noted. First, numerous modes are overdamped due to the presence of the bearing damping, and
thus do not appear in this table. Second, several modes have a damping consistent with the
assumed material damping of 0.001 (e.g., 298., 429., and 818. Hz for the actual coefficient
model, and 310., 429., and 874. Hz for the reduced coefficient model). These are torsional
modes, indicated by a "T" in Table 5.4, that are not affected by the bearing coefficients because
the coefficients act only in the radial direction and the centerline rotor and outer ring grids where
the bearing coefficients are applied have displacements only in the axial direction for these

11An evaluation using various values for N for the actual coefficient model decomposition has shown that aliasing
effects have a negligible impact on the results reported in Figure 5. 10.
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modes. The differences between the resonance frequencies of each model for these modes are a
result of neglecting the pad rotational inertia about the r and 0 directions in the reduced
coefficient model. Third, modes for which the rotor is spatially comprised of a single
circumferential Fourier component are identified in this table with the variable "N" (bending
modes only). Modes without such a designation are largely affected by the non-uniform
coefficient distribution and are thus comprised of multiple Fourier components, which are not
shown in the table. Next, resonances corresponding to the peaks in Figure 5.9 are shown in bold
face font in Table 5.4. For these modes, both the rotor and outer ring are comprised of the same
Fourier component shown in the table. Moreover, it is apparent from the damping in this table
that the peak height near 800 Hz in Figure 5.9 is not due to disparate damping levels, but due to
structural dissimilarities (the transfer accelerance peak and loss factor for the reduced coefficient
model are both higher than those for the actual coefficient model). Finally, numerous repeated

Table 5.4. Resonance frequencies and damping levels.

Actual Coefficient Model Reduced Coefficient Model
Resonance ResonanceLoss Factor Loss FactorFrequency (Hz) Frequency (Hz)
3.72 (N=1) 16.
7.72 (N=1) 6.0

19.5 (N=1) 6.7
153. 0.62

169. (N=2,x2) 2.1
261. (N=2) 0.068
267. (N=2) 0.73
288. (N=2) 0.022 286. (N=2,x2) 0.018

287. (N=2,x2) 0.016
298. (T,x2) 0.001 310. (T,x2) 0.001
298. (N=2) 0.026
299. (N=2) 0.022
429. (T,x2) 0.001 429. (T,x2) 0.001
(outer ring) (outer ring)

548. 0.48
615. 0.54
696. (N=3) 0.18
746. (N=3) 0.27
747. 0.62

788. (N=3) 0.031
809. (N=3) 0.025 794. (N=3) 0.044

798. (N=3) 0.041
816. 0.053
818. (T,x2) 0.001 874. (T,x2) 0.001
913. 0.42
976. 0.22
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resonances occur for the reduced coefficient model due to the model's uniform bearing
coefficient distribution and the structure's axi-symmetry (these are indicated by a "x2" next to
the resonance frequencies in Table 5.4). Repeated resonances are also present in the actual
coefficient model, but only for modes not affected by the non-uniformly distributed bearing
coefficients (i.e., the torsional modes described previously).

6 Summary and Conclusions
A review of methods currently employed for modeling static and dynamic characteristics of fluid
film bearings has been provided. Pertinent literature has been reviewed and summarized with an
effort placed on highlighting the nuances associated with such models. In nearly all cases, the
literature discusses the use of dynamic coefficients for rotor-dynamics models, in which a single
stiffness and damping matrix is used to connect an individual rotor node to an individual
stator/bearing node. The focus of this work was on developing dynamic coefficients for a
structural finite element model, which uses a distribution of the coefficients over the journal
circumference. The proposed method is applicable to all fluid film bearings. The method is
approximate in the sense that the effect of a flexible journal and/or bearing is not incorporated in
the resulting coefficients.

For the case of a tilting pad bearing, rotor-dynamics models often use a reduced set of
coefficients such that the individual pads need not be modeled. The process of reducing the
coefficients causes them to become frequency dependent since a frequency for the pad rotational
degrees of freedom must be assumed. As discussed herein, by explicitly modeling the pads in,
for example, a structural finite element model, the pad rotational degrees of freedom are
accounted for in the finite element model and thus the bearing coefficients are no longer
frequency dependent.

A brief discussion regarding the application of the computed dynamic coefficients for a
structural finite element model is also provided. Because of the unsymmetric nature of the
stiffness coefficients (the damping coefficient matrix should always be symmetric), there may be

- a need to directly input the matrices to the finite element model, depending on the available
elements for the solver being used (e.g., ABAQUS, ANSYS, or NASTRAN). It was also
suggested that symmetric and anti-symmetric matrices be created from the unsymmetric matrices
to facilitate the solution process.

The importance of appropriately distributing the computed bearing coefficients is demonstrated
through a numerical study wherein a comparison of results for a tilting pad bearing model are
computed for two different implementations of the bearing coefficients. The two coefficient
implementations are: 1) a synchronous reduction of the coefficients and a uniform distribution to
the journal circumference in a model with no tilting pads, and 2) a model using the distribution
method proposed herein which incorporates explicit structural models of the tilting pads and a
distribution of the coefficients to each pad grid in the FE model. A comparison of results for
these models shows substantial differences in the transfer accelerance (both in amplitude and
circumferential makeup), resonance frequencies, and damping levels.
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Appendix: Simplified Solutions to Reynolds Equation

Simplified solutions to Equation 2.1 are available for steady-state conditions (i.e., A = 0) for the
L 6 60

case of an infinitely long plain journal bearing (i.e., L >v 1 ) and for the case of a short
L D do

plain journal bearing (i.e., L <1 - 0 The solution to the long bearing approximation,

called the long bearing solution, or the Sommerfeld solution, is shown in Equation A. 1 [4].

=pRQ?[6esinr(2+Ccosr)]+P. (A. 1)

where C is the radial clearance, e is the ratio of the eccentricity and the radial clearance (eIC),
0 is the angle between the load direction and the film rupture location (see Figure 2.1), and Pa
accounts for any supply pressure at r= 0-€0= 0. Note that film rupture occurs at y= 7t and the
active film falls within 0 < r•< 7t. Equation A. 1 predicts negative pressures for 7t < y< 0, and
thus the pressure is assumed to be p,, within this range. A relationship between the load and
eccentricity is provided in Equation A.2.

W = laR 3 -L 12re (A.2)
C2  (2+e2)1)•• , (A.2)

where W is the load.

The short bearing solution, or the Ocvirk solution, is shown in Equation A.3, with the load-
eccentricity relationship in Equation A.4 [4].

: =_PQ(L2-_ 2)+ 3e sin y (A.3)
C24 z ( + (+ecos,) 3 ,

where L is the bearing width, and - L < z < L
2 2

_ #uRW]L (er212+16 (A.4
c'4(1 '62) 2  J(A )

The film rupture location is determined using Equation A.5.

0 = tn 4e . (A.5)
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